-------------------------------------------
-- @author https://github.com/Kasper24
-- @copyright 2021-2022 Kasper24
-------------------------------------------

-- easing

-- Adapted from https://github.com/EmmanuelOga/easing. See LICENSE.txt for credits.
-- For all easing functions:
-- t = time == how much time has to pass for the tweening to complete
-- b = begin == starting property value
-- c = change == ending - beginning
-- d = duration == running time. How much time has passed *right now*

local gobject = require("gears.object")
local gtable = require("gears.table")

local tween = {
	_VERSION = "tween 2.1.1",
	_DESCRIPTION = "tweening for lua",
	_URL = "https://github.com/kikito/tween.lua",
	_LICENSE = [[
    MIT LICENSE
    Copyright (c) 2014 Enrique GarcĂ­a Cota, Yuichi Tateno, Emmanuel Oga
    Permission is hereby granted, free of charge, to any person obtaining a
    copy of this software and associated documentation files (the
    "Software"), to deal in the Software without restriction, including
    without limitation the rights to use, copy, modify, merge, publish,
    distribute, sublicense, and/or sell copies of the Software, and to
    permit persons to whom the Software is furnished to do so, subject to
    the following conditions:
    The above copyright notice and this permission notice shall be included
    in all copies or substantial portions of the Software.
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
    IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
    CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
    TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
    SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  ]],
}

local sin, cos, pi, sqrt, abs, asin = math.sin, math.cos, math.pi, math.sqrt, math.abs, math.asin

-- linear
local function linear(t, b, c, d)
	return c * t / d + b
end

-- quad
local function inQuad(t, b, c, d)
	return c * ((t / d) ^ 2) + b
end
local function outQuad(t, b, c, d)
	t = t / d
	return -c * t * (t - 2) + b
end
local function inOutQuad(t, b, c, d)
	t = t / d * 2
	if t < 1 then
		return c / 2 * (t ^ 2) + b
	end
	return -c / 2 * ((t - 1) * (t - 3) - 1) + b
end
local function outInQuad(t, b, c, d)
	if t < d / 2 then
		return outQuad(t * 2, b, c / 2, d)
	end
	return inQuad((t * 2) - d, b + c / 2, c / 2, d)
end

-- cubic
local function inCubic(t, b, c, d)
	return c * ((t / d) ^ 3) + b
end
local function outCubic(t, b, c, d)
	return c * (((t / d - 1) ^ 3) + 1) + b
end
local function inOutCubic(t, b, c, d)
	t = t / d * 2
	if t < 1 then
		return c / 2 * t * t * t + b
	end
	t = t - 2
	return c / 2 * (t * t * t + 2) + b
end
local function outInCubic(t, b, c, d)
	if t < d / 2 then
		return outCubic(t * 2, b, c / 2, d)
	end
	return inCubic((t * 2) - d, b + c / 2, c / 2, d)
end

-- quart
local function inQuart(t, b, c, d)
	return c * ((t / d) ^ 4) + b
end
local function outQuart(t, b, c, d)
	return -c * (((t / d - 1) ^ 4) - 1) + b
end
local function inOutQuart(t, b, c, d)
	t = t / d * 2
	if t < 1 then
		return c / 2 * (t ^ 4) + b
	end
	return -c / 2 * (((t - 2) ^ 4) - 2) + b
end
local function outInQuart(t, b, c, d)
	if t < d / 2 then
		return outQuart(t * 2, b, c / 2, d)
	end
	return inQuart((t * 2) - d, b + c / 2, c / 2, d)
end

-- quint
local function inQuint(t, b, c, d)
	return c * ((t / d) ^ 5) + b
end
local function outQuint(t, b, c, d)
	return c * (((t / d - 1) ^ 5) + 1) + b
end
local function inOutQuint(t, b, c, d)
	t = t / d * 2
	if t < 1 then
		return c / 2 * (t ^ 5) + b
	end
	return c / 2 * (((t - 2) ^ 5) + 2) + b
end
local function outInQuint(t, b, c, d)
	if t < d / 2 then
		return outQuint(t * 2, b, c / 2, d)
	end
	return inQuint((t * 2) - d, b + c / 2, c / 2, d)
end

-- sine
local function inSine(t, b, c, d)
	return -c * cos(t / d * (pi / 2)) + c + b
end
local function outSine(t, b, c, d)
	return c * sin(t / d * (pi / 2)) + b
end
local function inOutSine(t, b, c, d)
	return -c / 2 * (cos(pi * t / d) - 1) + b
end
local function outInSine(t, b, c, d)
	if t < d / 2 then
		return outSine(t * 2, b, c / 2, d)
	end
	return inSine((t * 2) - d, b + c / 2, c / 2, d)
end

-- expo
local function inExpo(t, b, c, d)
	if t == 0 then
		return b
	end
	return c * (2 ^ (10 * (t / d - 1))) + b - c * 0.001
end
local function outExpo(t, b, c, d)
	if t == d then
		return b + c
	end
	return c * 1.001 * (-(2 ^ (-10 * t / d)) + 1) + b
end
local function inOutExpo(t, b, c, d)
	if t == 0 then
		return b
	end
	if t == d then
		return b + c
	end
	t = t / d * 2
	if t < 1 then
		return c / 2 * (2 ^ (10 * (t - 1))) + b - c * 0.0005
	end
	return c / 2 * 1.0005 * (-(2 ^ (-10 * (t - 1))) + 2) + b
end
local function outInExpo(t, b, c, d)
	if t < d / 2 then
		return outExpo(t * 2, b, c / 2, d)
	end
	return inExpo((t * 2) - d, b + c / 2, c / 2, d)
end

-- circ
local function inCirc(t, b, c, d)
	return (-c * (sqrt(1 - ((t / d) ^ 2)) - 1) + b)
end
local function outCirc(t, b, c, d)
	return (c * sqrt(1 - ((t / d - 1) ^ 2)) + b)
end
local function inOutCirc(t, b, c, d)
	t = t / d * 2
	if t < 1 then
		return -c / 2 * (sqrt(1 - t * t) - 1) + b
	end
	t = t - 2
	return c / 2 * (sqrt(1 - t * t) + 1) + b
end
local function outInCirc(t, b, c, d)
	if t < d / 2 then
		return outCirc(t * 2, b, c / 2, d)
	end
	return inCirc((t * 2) - d, b + c / 2, c / 2, d)
end

-- elastic
local function calculatePAS(p, a, c, d)
	p, a = p or d * 0.3, a or 0
	if a < abs(c) then
		return p, c, p / 4
	end -- p, a, s
	return p, a, p / (2 * pi) * asin(c / a) -- p,a,s
end
local function inElastic(t, b, c, d, a, p)
	local s
	if t == 0 then
		return b
	end
	t = t / d
	if t == 1 then
		return b + c
	end
	p, a, s = calculatePAS(p, a, c, d)
	t = t - 1
	return -(a * (2 ^ (10 * t)) * sin((t * d - s) * (2 * pi) / p)) + b
end
local function outElastic(t, b, c, d, a, p)
	local s
	if t == 0 then
		return b
	end
	t = t / d
	if t == 1 then
		return b + c
	end
	p, a, s = calculatePAS(p, a, c, d)
	return a * (2 ^ (-10 * t)) * sin((t * d - s) * (2 * pi) / p) + c + b
end
local function inOutElastic(t, b, c, d, a, p)
	local s
	if t == 0 then
		return b
	end
	t = t / d * 2
	if t == 2 then
		return b + c
	end
	p, a, s = calculatePAS(p, a, c, d)
	t = t - 1
	if t < 0 then
		return -0.5 * (a * (2 ^ (10 * t)) * sin((t * d - s) * (2 * pi) / p)) + b
	end
	return a * (2 ^ (-10 * t)) * sin((t * d - s) * (2 * pi) / p) * 0.5 + c + b
end
local function outInElastic(t, b, c, d, a, p)
	if t < d / 2 then
		return outElastic(t * 2, b, c / 2, d, a, p)
	end
	return inElastic((t * 2) - d, b + c / 2, c / 2, d, a, p)
end

-- back
local function inBack(t, b, c, d, s)
	s = s or 1.70158
	t = t / d
	return c * t * t * ((s + 1) * t - s) + b
end
local function outBack(t, b, c, d, s)
	s = s or 1.70158
	t = t / d - 1
	return c * (t * t * ((s + 1) * t + s) + 1) + b
end
local function inOutBack(t, b, c, d, s)
	s = (s or 1.70158) * 1.525
	t = t / d * 2
	if t < 1 then
		return c / 2 * (t * t * ((s + 1) * t - s)) + b
	end
	t = t - 2
	return c / 2 * (t * t * ((s + 1) * t + s) + 2) + b
end
local function outInBack(t, b, c, d, s)
	if t < d / 2 then
		return outBack(t * 2, b, c / 2, d, s)
	end
	return inBack((t * 2) - d, b + c / 2, c / 2, d, s)
end

-- bounce
local function outBounce(t, b, c, d)
	t = t / d
	if t < 1 / 2.75 then
		return c * (7.5625 * t * t) + b
	end
	if t < 2 / 2.75 then
		t = t - (1.5 / 2.75)
		return c * (7.5625 * t * t + 0.75) + b
	elseif t < 2.5 / 2.75 then
		t = t - (2.25 / 2.75)
		return c * (7.5625 * t * t + 0.9375) + b
	end
	t = t - (2.625 / 2.75)
	return c * (7.5625 * t * t + 0.984375) + b
end
local function inBounce(t, b, c, d)
	return c - outBounce(d - t, 0, c, d) + b
end
local function inOutBounce(t, b, c, d)
	if t < d / 2 then
		return inBounce(t * 2, 0, c, d) * 0.5 + b
	end
	return outBounce(t * 2 - d, 0, c, d) * 0.5 + c * 0.5 + b
end
local function outInBounce(t, b, c, d)
	if t < d / 2 then
		return outBounce(t * 2, b, c / 2, d)
	end
	return inBounce((t * 2) - d, b + c / 2, c / 2, d)
end

tween.easing = {
	linear = linear,
	inQuad = inQuad,
	outQuad = outQuad,
	inOutQuad = inOutQuad,
	outInQuad = outInQuad,
	inCubic = inCubic,
	outCubic = outCubic,
	inOutCubic = inOutCubic,
	outInCubic = outInCubic,
	inQuart = inQuart,
	outQuart = outQuart,
	inOutQuart = inOutQuart,
	outInQuart = outInQuart,
	inQuint = inQuint,
	outQuint = outQuint,
	inOutQuint = inOutQuint,
	outInQuint = outInQuint,
	inSine = inSine,
	outSine = outSine,
	inOutSine = inOutSine,
	outInSine = outInSine,
	inExpo = inExpo,
	outExpo = outExpo,
	inOutExpo = inOutExpo,
	outInExpo = outInExpo,
	inCirc = inCirc,
	outCirc = outCirc,
	inOutCirc = inOutCirc,
	outInCirc = outInCirc,
	inElastic = inElastic,
	outElastic = outElastic,
	inOutElastic = inOutElastic,
	outInElastic = outInElastic,
	inBack = inBack,
	outBack = outBack,
	inOutBack = inOutBack,
	outInBack = outInBack,
	inBounce = inBounce,
	outBounce = outBounce,
	inOutBounce = inOutBounce,
	outInBounce = outInBounce,
}

-- Private interface
local function copyTables(destination, keysTable, valuesTable)
	valuesTable = valuesTable or keysTable
	local mt = getmetatable(keysTable)
	if mt and getmetatable(destination) == nil then
		setmetatable(destination, mt)
	end

	for k, v in pairs(keysTable) do
		if type(v) == "table" then
			destination[k] = copyTables({}, v, valuesTable[k])
		else
			destination[k] = valuesTable[k]
		end
	end
	return destination
end

local function checkSubjectAndTargetRecursively(subject, target, path)
	path = path or {}
	local targetType, newPath
	for k, targetValue in pairs(target) do
		targetType, newPath = type(targetValue), copyTables({}, path)
		table.insert(newPath, tostring(k))
		if targetType == "number" then
			assert(
				type(subject[k]) == "number",
				"Parameter '" .. table.concat(newPath, "/") .. "' is missing from subject or isn't a number"
			)
		elseif targetType == "table" then
			checkSubjectAndTargetRecursively(subject[k], targetValue, newPath)
		else
			assert(
				targetType == "number",
				"Parameter '" .. table.concat(newPath, "/") .. "' must be a number or table of numbers"
			)
		end
	end
end

local function checkNewParams(_, _, subject, target, easing)
	-- assert(type(initial) == 'number' and duration > 0, "duration must be a positive number. Was " .. tostring(duration))
	-- assert(type(duration) == 'number' and duration > 0, "duration must be a positive number. Was " .. tostring(duration))
	assert(type(easing) == "function", "easing must be a function. Was " .. tostring(easing))

	if subject and target then
		local tsubject = type(subject)
		assert(
			tsubject == "table" or tsubject == "userdata",
			"subject must be a table or userdata. Was " .. tostring(subject)
		)
		assert(type(target) == "table", "target must be a table. Was " .. tostring(target))
		checkSubjectAndTargetRecursively(subject, target)
	end
end

local function getEasingFunction(easing)
	easing = easing or "linear"
	if type(easing) == "string" then
		local name = easing
		easing = tween.easing[name]
		if type(easing) ~= "function" then
			error("The easing function name '" .. name .. "' is invalid")
		end
	end
	return easing
end

local function performEasingOnSubject(subject, target, initial, clock, duration, easing)
	local t, b, c, d
	for k, v in pairs(target) do
		if type(v) == "table" then
			performEasingOnSubject(subject[k], v, initial[k], clock, duration, easing)
		else
			t, b, c, d = clock, initial[k], v - initial[k], duration
			subject[k] = easing(t, b, c, d)
		end
	end
end

local function performEasing(table, initial, target, clock, duration, easing)
	if type(target) == "table" then
		local t, b, c, d
		for k, v in pairs(target) do
			if type(v) == "table" then
				table[k] = {}
				performEasing(table[k], initial[k], v, clock, duration, easing)
			else
				t, b, c, d = clock, initial[k], v - initial[k], duration
				table[k] = easing(t, b, c, d)
			end
		end

		return table
	else
		local t, b, c, d = clock, initial, target - initial, duration
		return easing(t, b, c, d)
	end
end

-- Public interface
local Tween = {}

function Tween:set(clock)
	assert(type(clock) == "number", "clock must be a positive number or 0")

	if self.subject and self.initial == 0 then
		self.initial = copyTables({}, self.target, self.subject)
	end

	self.clock = clock

	if self.clock <= 0 then
		self.clock = 0
		if self.subject then
			copyTables(self.subject, self.initial)
		end
	elseif self.clock >= self.duration then -- the tween has expired
		self.clock = self.duration

		if self.subject then
			copyTables(self.subject, self.target)
		end
	else
		if self.subject then
			performEasingOnSubject(self.subject, self.target, self.initial, self.clock, self.duration, self.easing)
		else
			local pos = {}
			return performEasing(pos, self.initial, self.target, self.clock, self.duration, self.easing)
		end
	end

	return self.clock >= self.duration
end

function Tween:update(dt)
	assert(type(dt) == "number", "dt must be a number")
	return self:set(self.clock + dt)
end

function Tween:reset()
	return self:set(0)
end

function tween.new(args)
	args = args or {}

	args.initial = args.initial or 0
	args.subject = args.subject or nil
	args.target = args.target or nil
	args.duration = args.duration or 0
	args.easing = args.easing or nil

	args.easing = getEasingFunction(args.easing)
	checkNewParams(args.initial, args.duration, args.subject, args.target, args.easing)

	local ret = gobject({})
	ret.clock = 0

	gtable.crush(ret, args, true)
	gtable.crush(ret, Tween, true)

	return ret
end

return tween