odin-javascript-exercises/node_modules/eslint/lib/rules/indent.js

1523 lines
64 KiB
JavaScript
Raw Normal View History

2017-12-15 10:56:14 -08:00
/**
* @fileoverview This option sets a specific tab width for your code
*
* @author Teddy Katz
* @author Vitaly Puzrin
* @author Gyandeep Singh
*/
"use strict";
//------------------------------------------------------------------------------
// Requirements
//------------------------------------------------------------------------------
const lodash = require("lodash");
const astUtils = require("../ast-utils");
const createTree = require("functional-red-black-tree");
//------------------------------------------------------------------------------
// Rule Definition
//------------------------------------------------------------------------------
const KNOWN_NODES = new Set([
"AssignmentExpression",
"AssignmentPattern",
"ArrayExpression",
"ArrayPattern",
"ArrowFunctionExpression",
"AwaitExpression",
"BlockStatement",
"BinaryExpression",
"BreakStatement",
"CallExpression",
"CatchClause",
"ClassBody",
"ClassDeclaration",
"ClassExpression",
"ConditionalExpression",
"ContinueStatement",
"DoWhileStatement",
"DebuggerStatement",
"EmptyStatement",
"ExperimentalRestProperty",
"ExperimentalSpreadProperty",
"ExpressionStatement",
"ForStatement",
"ForInStatement",
"ForOfStatement",
"FunctionDeclaration",
"FunctionExpression",
"Identifier",
"IfStatement",
"Literal",
"LabeledStatement",
"LogicalExpression",
"MemberExpression",
"MetaProperty",
"MethodDefinition",
"NewExpression",
"ObjectExpression",
"ObjectPattern",
"Program",
"Property",
"RestElement",
"ReturnStatement",
"SequenceExpression",
"SpreadElement",
"Super",
"SwitchCase",
"SwitchStatement",
"TaggedTemplateExpression",
"TemplateElement",
"TemplateLiteral",
"ThisExpression",
"ThrowStatement",
"TryStatement",
"UnaryExpression",
"UpdateExpression",
"VariableDeclaration",
"VariableDeclarator",
"WhileStatement",
"WithStatement",
"YieldExpression",
"JSXIdentifier",
"JSXNamespacedName",
"JSXMemberExpression",
"JSXEmptyExpression",
"JSXExpressionContainer",
"JSXElement",
"JSXClosingElement",
"JSXOpeningElement",
"JSXAttribute",
"JSXSpreadAttribute",
"JSXText",
"ExportDefaultDeclaration",
"ExportNamedDeclaration",
"ExportAllDeclaration",
"ExportSpecifier",
"ImportDeclaration",
"ImportSpecifier",
"ImportDefaultSpecifier",
"ImportNamespaceSpecifier"
]);
/*
* General rule strategy:
* 1. An OffsetStorage instance stores a map of desired offsets, where each token has a specified offset from another
* specified token or to the first column.
* 2. As the AST is traversed, modify the desired offsets of tokens accordingly. For example, when entering a
* BlockStatement, offset all of the tokens in the BlockStatement by 1 indent level from the opening curly
* brace of the BlockStatement.
* 3. After traversing the AST, calculate the expected indentation levels of every token according to the
* OffsetStorage container.
* 4. For each line, compare the expected indentation of the first token to the actual indentation in the file,
* and report the token if the two values are not equal.
*/
/**
* A mutable balanced binary search tree that stores (key, value) pairs. The keys are numeric, and must be unique.
* This is intended to be a generic wrapper around a balanced binary search tree library, so that the underlying implementation
* can easily be swapped out.
*/
class BinarySearchTree {
/**
* Creates an empty tree
*/
constructor() {
this._rbTree = createTree();
}
/**
* Inserts an entry into the tree.
* @param {number} key The entry's key
* @param {*} value The entry's value
* @returns {void}
*/
insert(key, value) {
const iterator = this._rbTree.find(key);
if (iterator.valid) {
this._rbTree = iterator.update(value);
} else {
this._rbTree = this._rbTree.insert(key, value);
}
}
/**
* Finds the entry with the largest key less than or equal to the provided key
* @param {number} key The provided key
* @returns {{key: number, value: *}|null} The found entry, or null if no such entry exists.
*/
findLe(key) {
const iterator = this._rbTree.le(key);
return iterator && { key: iterator.key, value: iterator.value };
}
/**
* Deletes all of the keys in the interval [start, end)
* @param {number} start The start of the range
* @param {number} end The end of the range
* @returns {void}
*/
deleteRange(start, end) {
// Exit without traversing the tree if the range has zero size.
if (start === end) {
return;
}
const iterator = this._rbTree.ge(start);
while (iterator.valid && iterator.key < end) {
this._rbTree = this._rbTree.remove(iterator.key);
iterator.next();
}
}
}
/**
* A helper class to get token-based info related to indentation
*/
class TokenInfo {
/**
* @param {SourceCode} sourceCode A SourceCode object
*/
constructor(sourceCode) {
this.sourceCode = sourceCode;
this.firstTokensByLineNumber = sourceCode.tokensAndComments.reduce((map, token) => {
if (!map.has(token.loc.start.line)) {
map.set(token.loc.start.line, token);
}
if (!map.has(token.loc.end.line) && sourceCode.text.slice(token.range[1] - token.loc.end.column, token.range[1]).trim()) {
map.set(token.loc.end.line, token);
}
return map;
}, new Map());
}
/**
* Gets the first token on a given token's line
* @param {Token|ASTNode} token a node or token
* @returns {Token} The first token on the given line
*/
getFirstTokenOfLine(token) {
return this.firstTokensByLineNumber.get(token.loc.start.line);
}
/**
* Determines whether a token is the first token in its line
* @param {Token} token The token
* @returns {boolean} `true` if the token is the first on its line
*/
isFirstTokenOfLine(token) {
return this.getFirstTokenOfLine(token) === token;
}
/**
* Get the actual indent of a token
* @param {Token} token Token to examine. This should be the first token on its line.
* @returns {string} The indentation characters that precede the token
*/
getTokenIndent(token) {
return this.sourceCode.text.slice(token.range[0] - token.loc.start.column, token.range[0]);
}
}
/**
* A class to store information on desired offsets of tokens from each other
*/
class OffsetStorage {
/**
* @param {TokenInfo} tokenInfo a TokenInfo instance
* @param {number} indentSize The desired size of each indentation level
* @param {string} indentType The indentation character
*/
constructor(tokenInfo, indentSize, indentType) {
this._tokenInfo = tokenInfo;
this._indentSize = indentSize;
this._indentType = indentType;
this._tree = new BinarySearchTree();
this._tree.insert(0, { offset: 0, from: null, force: false });
this._lockedFirstTokens = new WeakMap();
this._desiredIndentCache = new WeakMap();
this._ignoredTokens = new WeakSet();
}
_getOffsetDescriptor(token) {
return this._tree.findLe(token.range[0]).value;
}
/**
* Sets the offset column of token B to match the offset column of token A.
* **WARNING**: This matches a *column*, even if baseToken is not the first token on its line. In
* most cases, `setDesiredOffset` should be used instead.
* @param {Token} baseToken The first token
* @param {Token} offsetToken The second token, whose offset should be matched to the first token
* @returns {void}
*/
matchOffsetOf(baseToken, offsetToken) {
/*
* lockedFirstTokens is a map from a token whose indentation is controlled by the "first" option to
* the token that it depends on. For example, with the `ArrayExpression: first` option, the first
* token of each element in the array after the first will be mapped to the first token of the first
* element. The desired indentation of each of these tokens is computed based on the desired indentation
* of the "first" element, rather than through the normal offset mechanism.
*/
this._lockedFirstTokens.set(offsetToken, baseToken);
}
/**
* Sets the desired offset of a token.
*
* This uses a line-based offset collapsing behavior to handle tokens on the same line.
* For example, consider the following two cases:
*
* (
* [
* bar
* ]
* )
*
* ([
* bar
* ])
*
* Based on the first case, it's clear that the `bar` token needs to have an offset of 1 indent level (4 spaces) from
* the `[` token, and the `[` token has to have an offset of 1 indent level from the `(` token. Since the `(` token is
* the first on its line (with an indent of 0 spaces), the `bar` token needs to be offset by 2 indent levels (8 spaces)
* from the start of its line.
*
* However, in the second case `bar` should only be indented by 4 spaces. This is because the offset of 1 indent level
* between the `(` and the `[` tokens gets "collapsed" because the two tokens are on the same line. As a result, the
* `(` token is mapped to the `[` token with an offset of 0, and the rule correctly decides that `bar` should be indented
* by 1 indent level from the start of the line.
*
* This is useful because rule listeners can usually just call `setDesiredOffset` for all the tokens in the node,
* without needing to check which lines those tokens are on.
*
* Note that since collapsing only occurs when two tokens are on the same line, there are a few cases where non-intuitive
* behavior can occur. For example, consider the following cases:
*
* foo(
* ).
* bar(
* baz
* )
*
* foo(
* ).bar(
* baz
* )
*
* Based on the first example, it would seem that `bar` should be offset by 1 indent level from `foo`, and `baz`
* should be offset by 1 indent level from `bar`. However, this is not correct, because it would result in `baz`
* being indented by 2 indent levels in the second case (since `foo`, `bar`, and `baz` are all on separate lines, no
* collapsing would occur).
*
* Instead, the correct way would be to offset `baz` by 1 level from `bar`, offset `bar` by 1 level from the `)`, and
* offset the `)` by 0 levels from `foo`. This ensures that the offset between `bar` and the `)` are correctly collapsed
* in the second case.
*
* @param {Token} token The token
* @param {Token} fromToken The token that `token` should be offset from
* @param {number} offset The desired indent level
* @returns {void}
*/
setDesiredOffset(token, fromToken, offset) {
return this.setDesiredOffsets(token.range, fromToken, offset);
}
/**
* Sets the desired offset of all tokens in a range
* It's common for node listeners in this file to need to apply the same offset to a large, contiguous range of tokens.
* Moreover, the offset of any given token is usually updated multiple times (roughly once for each node that contains
* it). This means that the offset of each token is updated O(AST depth) times.
* It would not be performant to store and update the offsets for each token independently, because the rule would end
* up having a time complexity of O(number of tokens * AST depth), which is quite slow for large files.
*
* Instead, the offset tree is represented as a collection of contiguous offset ranges in a file. For example, the following
* list could represent the state of the offset tree at a given point:
*
* * Tokens starting in the interval [0, 15) are aligned with the beginning of the file
* * Tokens starting in the interval [15, 30) are offset by 1 indent level from the `bar` token
* * Tokens starting in the interval [30, 43) are offset by 1 indent level from the `foo` token
* * Tokens starting in the interval [43, 820) are offset by 2 indent levels from the `bar` token
* * Tokens starting in the interval [820, ) are offset by 1 indent level from the `baz` token
*
* The `setDesiredOffsets` methods inserts ranges like the ones above. The third line above would be inserted by using:
* `setDesiredOffsets([30, 43], fooToken, 1);`
*
* @param {[number, number]} range A [start, end] pair. All tokens with range[0] <= token.start < range[1] will have the offset applied.
* @param {Token} fromToken The token that this is offset from
* @param {number} offset The desired indent level
* @param {boolean} force `true` if this offset should not use the normal collapsing behavior. This should almost always be false.
* @returns {void}
*/
setDesiredOffsets(range, fromToken, offset, force) {
/*
* Offset ranges are stored as a collection of nodes, where each node maps a numeric key to an offset
* descriptor. The tree for the example above would have the following nodes:
*
* * key: 0, value: { offset: 0, from: null }
* * key: 15, value: { offset: 1, from: barToken }
* * key: 30, value: { offset: 1, from: fooToken }
* * key: 43, value: { offset: 2, from: barToken }
* * key: 820, value: { offset: 1, from: bazToken }
*
* To find the offset descriptor for any given token, one needs to find the node with the largest key
* which is <= token.start. To make this operation fast, the nodes are stored in a balanced binary
* search tree indexed by key.
*/
const descriptorToInsert = { offset, from: fromToken, force };
const descriptorAfterRange = this._tree.findLe(range[1]).value;
const fromTokenIsInRange = fromToken && fromToken.range[0] >= range[0] && fromToken.range[1] <= range[1];
const fromTokenDescriptor = fromTokenIsInRange && this._getOffsetDescriptor(fromToken);
// First, remove any existing nodes in the range from the tree.
this._tree.deleteRange(range[0] + 1, range[1]);
// Insert a new node into the tree for this range
this._tree.insert(range[0], descriptorToInsert);
/*
* To avoid circular offset dependencies, keep the `fromToken` token mapped to whatever it was mapped to previously,
* even if it's in the current range.
*/
if (fromTokenIsInRange) {
this._tree.insert(fromToken.range[0], fromTokenDescriptor);
this._tree.insert(fromToken.range[1], descriptorToInsert);
}
/*
* To avoid modifying the offset of tokens after the range, insert another node to keep the offset of the following
* tokens the same as it was before.
*/
this._tree.insert(range[1], descriptorAfterRange);
}
/**
* Gets the desired indent of a token
* @param {Token} token The token
* @returns {string} The desired indent of the token
*/
getDesiredIndent(token) {
if (!this._desiredIndentCache.has(token)) {
if (this._ignoredTokens.has(token)) {
/*
* If the token is ignored, use the actual indent of the token as the desired indent.
* This ensures that no errors are reported for this token.
*/
this._desiredIndentCache.set(
token,
this._tokenInfo.getTokenIndent(token)
);
} else if (this._lockedFirstTokens.has(token)) {
const firstToken = this._lockedFirstTokens.get(token);
this._desiredIndentCache.set(
token,
// (indentation for the first element's line)
this.getDesiredIndent(this._tokenInfo.getFirstTokenOfLine(firstToken)) +
// (space between the start of the first element's line and the first element)
this._indentType.repeat(firstToken.loc.start.column - this._tokenInfo.getFirstTokenOfLine(firstToken).loc.start.column)
);
} else {
const offsetInfo = this._getOffsetDescriptor(token);
const offset = (
offsetInfo.from &&
offsetInfo.from.loc.start.line === token.loc.start.line &&
!offsetInfo.force
) ? 0 : offsetInfo.offset * this._indentSize;
this._desiredIndentCache.set(
token,
(offsetInfo.from ? this.getDesiredIndent(offsetInfo.from) : "") + this._indentType.repeat(offset)
);
}
}
return this._desiredIndentCache.get(token);
}
/**
* Ignores a token, preventing it from being reported.
* @param {Token} token The token
* @returns {void}
*/
ignoreToken(token) {
if (this._tokenInfo.isFirstTokenOfLine(token)) {
this._ignoredTokens.add(token);
}
}
/**
* Gets the first token that the given token's indentation is dependent on
* @param {Token} token The token
* @returns {Token} The token that the given token depends on, or `null` if the given token is at the top level
*/
getFirstDependency(token) {
return this._getOffsetDescriptor(token).from;
}
}
const ELEMENT_LIST_SCHEMA = {
oneOf: [
{
type: "integer",
minimum: 0
},
{
enum: ["first", "off"]
}
]
};
module.exports = {
meta: {
docs: {
description: "enforce consistent indentation",
category: "Stylistic Issues",
recommended: false
},
fixable: "whitespace",
schema: [
{
oneOf: [
{
enum: ["tab"]
},
{
type: "integer",
minimum: 0
}
]
},
{
type: "object",
properties: {
SwitchCase: {
type: "integer",
minimum: 0
},
VariableDeclarator: {
oneOf: [
{
type: "integer",
minimum: 0
},
{
type: "object",
properties: {
var: {
type: "integer",
minimum: 0
},
let: {
type: "integer",
minimum: 0
},
const: {
type: "integer",
minimum: 0
}
},
additionalProperties: false
}
]
},
outerIIFEBody: {
type: "integer",
minimum: 0
},
MemberExpression: {
oneOf: [
{
type: "integer",
minimum: 0
},
{
enum: ["off"]
}
]
},
FunctionDeclaration: {
type: "object",
properties: {
parameters: ELEMENT_LIST_SCHEMA,
body: {
type: "integer",
minimum: 0
}
},
additionalProperties: false
},
FunctionExpression: {
type: "object",
properties: {
parameters: ELEMENT_LIST_SCHEMA,
body: {
type: "integer",
minimum: 0
}
},
additionalProperties: false
},
CallExpression: {
type: "object",
properties: {
arguments: ELEMENT_LIST_SCHEMA
},
additionalProperties: false
},
ArrayExpression: ELEMENT_LIST_SCHEMA,
ObjectExpression: ELEMENT_LIST_SCHEMA,
ImportDeclaration: ELEMENT_LIST_SCHEMA,
flatTernaryExpressions: {
type: "boolean"
},
ignoredNodes: {
type: "array",
items: {
type: "string",
not: {
pattern: ":exit$"
}
}
}
},
additionalProperties: false
}
]
},
create(context) {
const DEFAULT_VARIABLE_INDENT = 1;
const DEFAULT_PARAMETER_INDENT = 1;
const DEFAULT_FUNCTION_BODY_INDENT = 1;
let indentType = "space";
let indentSize = 4;
const options = {
SwitchCase: 0,
VariableDeclarator: {
var: DEFAULT_VARIABLE_INDENT,
let: DEFAULT_VARIABLE_INDENT,
const: DEFAULT_VARIABLE_INDENT
},
outerIIFEBody: 1,
FunctionDeclaration: {
parameters: DEFAULT_PARAMETER_INDENT,
body: DEFAULT_FUNCTION_BODY_INDENT
},
FunctionExpression: {
parameters: DEFAULT_PARAMETER_INDENT,
body: DEFAULT_FUNCTION_BODY_INDENT
},
CallExpression: {
arguments: DEFAULT_PARAMETER_INDENT
},
MemberExpression: 1,
ArrayExpression: 1,
ObjectExpression: 1,
ImportDeclaration: 1,
flatTernaryExpressions: false,
ignoredNodes: []
};
if (context.options.length) {
if (context.options[0] === "tab") {
indentSize = 1;
indentType = "tab";
} else {
indentSize = context.options[0];
indentType = "space";
}
if (context.options[1]) {
lodash.merge(options, context.options[1]);
if (typeof options.VariableDeclarator === "number") {
options.VariableDeclarator = {
var: options.VariableDeclarator,
let: options.VariableDeclarator,
const: options.VariableDeclarator
};
}
}
}
const sourceCode = context.getSourceCode();
const tokenInfo = new TokenInfo(sourceCode);
const offsets = new OffsetStorage(tokenInfo, indentSize, indentType === "space" ? " " : "\t");
const parameterParens = new WeakSet();
/**
* Creates an error message for a line, given the expected/actual indentation.
* @param {int} expectedAmount The expected amount of indentation characters for this line
* @param {int} actualSpaces The actual number of indentation spaces that were found on this line
* @param {int} actualTabs The actual number of indentation tabs that were found on this line
* @returns {string} An error message for this line
*/
function createErrorMessage(expectedAmount, actualSpaces, actualTabs) {
const expectedStatement = `${expectedAmount} ${indentType}${expectedAmount === 1 ? "" : "s"}`; // e.g. "2 tabs"
const foundSpacesWord = `space${actualSpaces === 1 ? "" : "s"}`; // e.g. "space"
const foundTabsWord = `tab${actualTabs === 1 ? "" : "s"}`; // e.g. "tabs"
let foundStatement;
if (actualSpaces > 0) {
/*
* Abbreviate the message if the expected indentation is also spaces.
* e.g. 'Expected 4 spaces but found 2' rather than 'Expected 4 spaces but found 2 spaces'
*/
foundStatement = indentType === "space" ? actualSpaces : `${actualSpaces} ${foundSpacesWord}`;
} else if (actualTabs > 0) {
foundStatement = indentType === "tab" ? actualTabs : `${actualTabs} ${foundTabsWord}`;
} else {
foundStatement = "0";
}
return `Expected indentation of ${expectedStatement} but found ${foundStatement}.`;
}
/**
* Reports a given indent violation
* @param {Token} token Token violating the indent rule
* @param {string} neededIndent Expected indentation string
* @returns {void}
*/
function report(token, neededIndent) {
const actualIndent = Array.from(tokenInfo.getTokenIndent(token));
const numSpaces = actualIndent.filter(char => char === " ").length;
const numTabs = actualIndent.filter(char => char === "\t").length;
context.report({
node: token,
message: createErrorMessage(neededIndent.length, numSpaces, numTabs),
loc: {
start: { line: token.loc.start.line, column: 0 },
end: { line: token.loc.start.line, column: token.loc.start.column }
},
fix(fixer) {
const range = [token.range[0] - token.loc.start.column, token.range[0]];
const newText = neededIndent;
return fixer.replaceTextRange(range, newText);
}
});
}
/**
* Checks if a token's indentation is correct
* @param {Token} token Token to examine
* @param {string} desiredIndent Desired indentation of the string
* @returns {boolean} `true` if the token's indentation is correct
*/
function validateTokenIndent(token, desiredIndent) {
const indentation = tokenInfo.getTokenIndent(token);
return indentation === desiredIndent ||
// To avoid conflicts with no-mixed-spaces-and-tabs, don't report mixed spaces and tabs.
indentation.includes(" ") && indentation.includes("\t");
}
/**
* Check to see if the node is a file level IIFE
* @param {ASTNode} node The function node to check.
* @returns {boolean} True if the node is the outer IIFE
*/
function isOuterIIFE(node) {
/*
* Verify that the node is an IIFE
*/
if (!node.parent || node.parent.type !== "CallExpression" || node.parent.callee !== node) {
return false;
}
/*
* Navigate legal ancestors to determine whether this IIFE is outer.
* A "legal ancestor" is an expression or statement that causes the function to get executed immediately.
* For example, `!(function(){})()` is an outer IIFE even though it is preceded by a ! operator.
*/
let statement = node.parent && node.parent.parent;
while (
statement.type === "UnaryExpression" && ["!", "~", "+", "-"].indexOf(statement.operator) > -1 ||
statement.type === "AssignmentExpression" ||
statement.type === "LogicalExpression" ||
statement.type === "SequenceExpression" ||
statement.type === "VariableDeclarator"
) {
statement = statement.parent;
}
return (statement.type === "ExpressionStatement" || statement.type === "VariableDeclaration") && statement.parent.type === "Program";
}
/**
* Check indentation for lists of elements (arrays, objects, function params)
* @param {ASTNode[]} elements List of elements that should be offset
* @param {Token} startToken The start token of the list that element should be aligned against, e.g. '['
* @param {Token} endToken The end token of the list, e.g. ']'
* @param {number|string} offset The amount that the elements should be offset
* @returns {void}
*/
function addElementListIndent(elements, startToken, endToken, offset) {
/**
* Gets the first token of a given element, including surrounding parentheses.
* @param {ASTNode} element A node in the `elements` list
* @returns {Token} The first token of this element
*/
function getFirstToken(element) {
let token = sourceCode.getTokenBefore(element);
while (astUtils.isOpeningParenToken(token) && token !== startToken) {
token = sourceCode.getTokenBefore(token);
}
return sourceCode.getTokenAfter(token);
}
// Run through all the tokens in the list, and offset them by one indent level (mainly for comments, other things will end up overridden)
offsets.setDesiredOffsets(
[startToken.range[1], endToken.range[0]],
startToken,
typeof offset === "number" ? offset : 1
);
offsets.setDesiredOffset(endToken, startToken, 0);
// If the preference is "first" but there is no first element (e.g. sparse arrays w/ empty first slot), fall back to 1 level.
if (offset === "first" && elements.length && !elements[0]) {
return;
}
elements.forEach((element, index) => {
if (!element) {
// Skip holes in arrays
return;
}
if (offset === "off") {
// Ignore the first token of every element if the "off" option is used
offsets.ignoreToken(getFirstToken(element));
}
// Offset the following elements correctly relative to the first element
if (index === 0) {
return;
}
if (offset === "first" && tokenInfo.isFirstTokenOfLine(getFirstToken(element))) {
offsets.matchOffsetOf(getFirstToken(elements[0]), getFirstToken(element));
} else {
const previousElement = elements[index - 1];
const firstTokenOfPreviousElement = previousElement && getFirstToken(previousElement);
if (previousElement && sourceCode.getLastToken(previousElement).loc.start.line > startToken.loc.end.line) {
offsets.setDesiredOffsets(element.range, firstTokenOfPreviousElement, 0);
}
}
});
}
/**
* Check and decide whether to check for indentation for blockless nodes
* Scenarios are for or while statements without braces around them
* @param {ASTNode} node node to examine
* @returns {void}
*/
function addBlocklessNodeIndent(node) {
if (node.type !== "BlockStatement") {
const lastParentToken = sourceCode.getTokenBefore(node, astUtils.isNotOpeningParenToken);
let firstBodyToken = sourceCode.getFirstToken(node);
let lastBodyToken = sourceCode.getLastToken(node);
while (
astUtils.isOpeningParenToken(sourceCode.getTokenBefore(firstBodyToken)) &&
astUtils.isClosingParenToken(sourceCode.getTokenAfter(lastBodyToken))
) {
firstBodyToken = sourceCode.getTokenBefore(firstBodyToken);
lastBodyToken = sourceCode.getTokenAfter(lastBodyToken);
}
offsets.setDesiredOffsets([firstBodyToken.range[0], lastBodyToken.range[1]], lastParentToken, 1);
/*
* For blockless nodes with semicolon-first style, don't indent the semicolon.
* e.g.
* if (foo) bar()
* ; [1, 2, 3].map(foo)
*/
const lastToken = sourceCode.getLastToken(node);
if (node.type !== "EmptyStatement" && astUtils.isSemicolonToken(lastToken)) {
offsets.setDesiredOffset(lastToken, lastParentToken, 0);
}
}
}
/**
* Checks the indentation for nodes that are like function calls (`CallExpression` and `NewExpression`)
* @param {ASTNode} node A CallExpression or NewExpression node
* @returns {void}
*/
function addFunctionCallIndent(node) {
let openingParen;
if (node.arguments.length) {
openingParen = sourceCode.getFirstTokenBetween(node.callee, node.arguments[0], astUtils.isOpeningParenToken);
} else {
openingParen = sourceCode.getLastToken(node, 1);
}
const closingParen = sourceCode.getLastToken(node);
parameterParens.add(openingParen);
parameterParens.add(closingParen);
offsets.setDesiredOffset(openingParen, sourceCode.getTokenBefore(openingParen), 0);
addElementListIndent(node.arguments, openingParen, closingParen, options.CallExpression.arguments);
}
/**
* Checks the indentation of parenthesized values, given a list of tokens in a program
* @param {Token[]} tokens A list of tokens
* @returns {void}
*/
function addParensIndent(tokens) {
const parenStack = [];
const parenPairs = [];
tokens.forEach(nextToken => {
// Accumulate a list of parenthesis pairs
if (astUtils.isOpeningParenToken(nextToken)) {
parenStack.push(nextToken);
} else if (astUtils.isClosingParenToken(nextToken)) {
parenPairs.unshift({ left: parenStack.pop(), right: nextToken });
}
});
parenPairs.forEach(pair => {
const leftParen = pair.left;
const rightParen = pair.right;
// We only want to handle parens around expressions, so exclude parentheses that are in function parameters and function call arguments.
if (!parameterParens.has(leftParen) && !parameterParens.has(rightParen)) {
const parenthesizedTokens = new Set(sourceCode.getTokensBetween(leftParen, rightParen));
parenthesizedTokens.forEach(token => {
if (!parenthesizedTokens.has(offsets.getFirstDependency(token))) {
offsets.setDesiredOffset(token, leftParen, 1);
}
});
}
offsets.setDesiredOffset(rightParen, leftParen, 0);
});
}
/**
* Ignore all tokens within an unknown node whose offset do not depend
* on another token's offset within the unknown node
* @param {ASTNode} node Unknown Node
* @returns {void}
*/
function ignoreNode(node) {
const unknownNodeTokens = new Set(sourceCode.getTokens(node, { includeComments: true }));
unknownNodeTokens.forEach(token => {
if (!unknownNodeTokens.has(offsets.getFirstDependency(token))) {
const firstTokenOfLine = tokenInfo.getFirstTokenOfLine(token);
if (token === firstTokenOfLine) {
offsets.ignoreToken(token);
} else {
offsets.setDesiredOffset(token, firstTokenOfLine, 0);
}
}
});
}
/**
* Check whether the given token is on the first line of a statement.
* @param {Token} token The token to check.
* @param {ASTNode} leafNode The expression node that the token belongs directly.
* @returns {boolean} `true` if the token is on the first line of a statement.
*/
function isOnFirstLineOfStatement(token, leafNode) {
let node = leafNode;
while (node.parent && !node.parent.type.endsWith("Statement") && !node.parent.type.endsWith("Declaration")) {
node = node.parent;
}
node = node.parent;
return !node || node.loc.start.line === token.loc.start.line;
}
const baseOffsetListeners = {
"ArrayExpression, ArrayPattern"(node) {
const openingBracket = sourceCode.getFirstToken(node);
const closingBracket = sourceCode.getTokenAfter(lodash.findLast(node.elements) || openingBracket, astUtils.isClosingBracketToken);
addElementListIndent(node.elements, openingBracket, closingBracket, options.ArrayExpression);
},
"ObjectExpression, ObjectPattern"(node) {
const openingCurly = sourceCode.getFirstToken(node);
const closingCurly = sourceCode.getTokenAfter(
node.properties.length ? node.properties[node.properties.length - 1] : openingCurly,
astUtils.isClosingBraceToken
);
addElementListIndent(node.properties, openingCurly, closingCurly, options.ObjectExpression);
},
ArrowFunctionExpression(node) {
const firstToken = sourceCode.getFirstToken(node);
if (astUtils.isOpeningParenToken(firstToken)) {
const openingParen = firstToken;
const closingParen = sourceCode.getTokenBefore(node.body, astUtils.isClosingParenToken);
parameterParens.add(openingParen);
parameterParens.add(closingParen);
addElementListIndent(node.params, openingParen, closingParen, options.FunctionExpression.parameters);
}
addBlocklessNodeIndent(node.body);
let arrowToken;
if (node.params.length) {
arrowToken = sourceCode.getTokenAfter(node.params[node.params.length - 1], astUtils.isArrowToken);
} else {
arrowToken = sourceCode.getFirstToken(node, astUtils.isArrowToken);
}
offsets.setDesiredOffset(arrowToken, sourceCode.getFirstToken(node), 0);
},
AssignmentExpression(node) {
const operator = sourceCode.getFirstTokenBetween(node.left, node.right, token => token.value === node.operator);
offsets.setDesiredOffsets([operator.range[0], node.range[1]], sourceCode.getLastToken(node.left), 1);
offsets.ignoreToken(operator);
offsets.ignoreToken(sourceCode.getTokenAfter(operator));
},
"BinaryExpression, LogicalExpression"(node) {
const operator = sourceCode.getFirstTokenBetween(node.left, node.right, token => token.value === node.operator);
/*
* For backwards compatibility, don't check BinaryExpression indents, e.g.
* var foo = bar &&
* baz;
*/
const tokenAfterOperator = sourceCode.getTokenAfter(operator);
offsets.ignoreToken(operator);
offsets.ignoreToken(tokenAfterOperator);
offsets.setDesiredOffset(tokenAfterOperator, operator, 0);
offsets.setDesiredOffsets([tokenAfterOperator.range[1], node.range[1]], tokenAfterOperator, 1);
},
"BlockStatement, ClassBody"(node) {
let blockIndentLevel;
if (node.parent && isOuterIIFE(node.parent)) {
blockIndentLevel = options.outerIIFEBody;
} else if (node.parent && (node.parent.type === "FunctionExpression" || node.parent.type === "ArrowFunctionExpression")) {
blockIndentLevel = options.FunctionExpression.body;
} else if (node.parent && node.parent.type === "FunctionDeclaration") {
blockIndentLevel = options.FunctionDeclaration.body;
} else {
blockIndentLevel = 1;
}
/*
* For blocks that aren't lone statements, ensure that the opening curly brace
* is aligned with the parent.
*/
if (!astUtils.STATEMENT_LIST_PARENTS.has(node.parent.type)) {
offsets.setDesiredOffset(sourceCode.getFirstToken(node), sourceCode.getFirstToken(node.parent), 0);
}
addElementListIndent(node.body, sourceCode.getFirstToken(node), sourceCode.getLastToken(node), blockIndentLevel);
},
CallExpression: addFunctionCallIndent,
"ClassDeclaration[superClass], ClassExpression[superClass]"(node) {
const classToken = sourceCode.getFirstToken(node);
const extendsToken = sourceCode.getTokenBefore(node.superClass, astUtils.isNotOpeningParenToken);
offsets.setDesiredOffsets([extendsToken.range[0], node.body.range[0]], classToken, 1);
},
ConditionalExpression(node) {
const firstToken = sourceCode.getFirstToken(node);
// `flatTernaryExpressions` option is for the following style:
// var a =
// foo > 0 ? bar :
// foo < 0 ? baz :
// /*else*/ qiz ;
if (!options.flatTernaryExpressions ||
!astUtils.isTokenOnSameLine(node.test, node.consequent) ||
isOnFirstLineOfStatement(firstToken, node)
) {
const questionMarkToken = sourceCode.getFirstTokenBetween(node.test, node.consequent, token => token.type === "Punctuator" && token.value === "?");
const colonToken = sourceCode.getFirstTokenBetween(node.consequent, node.alternate, token => token.type === "Punctuator" && token.value === ":");
const firstConsequentToken = sourceCode.getTokenAfter(questionMarkToken, { includeComments: true });
const lastConsequentToken = sourceCode.getTokenBefore(colonToken, { includeComments: true });
const firstAlternateToken = sourceCode.getTokenAfter(colonToken);
offsets.setDesiredOffset(questionMarkToken, firstToken, 1);
offsets.setDesiredOffset(colonToken, firstToken, 1);
offsets.setDesiredOffset(firstConsequentToken, firstToken, 1);
/*
* The alternate and the consequent should usually have the same indentation.
* If they share part of a line, align the alternate against the first token of the consequent.
* This allows the alternate to be indented correctly in cases like this:
* foo ? (
* bar
* ) : ( // this '(' is aligned with the '(' above, so it's considered to be aligned with `foo`
* baz // as a result, `baz` is offset by 1 rather than 2
* )
*/
if (lastConsequentToken.loc.end.line === firstAlternateToken.loc.start.line) {
offsets.setDesiredOffset(firstAlternateToken, firstConsequentToken, 0);
} else {
/**
* If the alternate and consequent do not share part of a line, offset the alternate from the first
* token of the conditional expression. For example:
* foo ? bar
* : baz
*
* If `baz` were aligned with `bar` rather than being offset by 1 from `foo`, `baz` would end up
* having no expected indentation.
*/
offsets.setDesiredOffset(firstAlternateToken, firstToken, 1);
}
offsets.setDesiredOffsets([questionMarkToken.range[1], colonToken.range[0]], firstConsequentToken, 0);
offsets.setDesiredOffsets([colonToken.range[1], node.range[1]], firstAlternateToken, 0);
}
},
"DoWhileStatement, WhileStatement, ForInStatement, ForOfStatement": node => addBlocklessNodeIndent(node.body),
ExportNamedDeclaration(node) {
if (node.declaration === null) {
const closingCurly = sourceCode.getLastToken(node, astUtils.isClosingBraceToken);
// Indent the specifiers in `export {foo, bar, baz}`
addElementListIndent(node.specifiers, sourceCode.getFirstToken(node, { skip: 1 }), closingCurly, 1);
if (node.source) {
// Indent everything after and including the `from` token in `export {foo, bar, baz} from 'qux'`
offsets.setDesiredOffsets([closingCurly.range[1], node.range[1]], sourceCode.getFirstToken(node), 1);
}
}
},
ForStatement(node) {
const forOpeningParen = sourceCode.getFirstToken(node, 1);
if (node.init) {
offsets.setDesiredOffsets(node.init.range, forOpeningParen, 1);
}
if (node.test) {
offsets.setDesiredOffsets(node.test.range, forOpeningParen, 1);
}
if (node.update) {
offsets.setDesiredOffsets(node.update.range, forOpeningParen, 1);
}
addBlocklessNodeIndent(node.body);
},
"FunctionDeclaration, FunctionExpression"(node) {
const closingParen = sourceCode.getTokenBefore(node.body);
const openingParen = sourceCode.getTokenBefore(node.params.length ? node.params[0] : closingParen);
parameterParens.add(openingParen);
parameterParens.add(closingParen);
addElementListIndent(node.params, openingParen, closingParen, options[node.type].parameters);
},
IfStatement(node) {
addBlocklessNodeIndent(node.consequent);
if (node.alternate && node.alternate.type !== "IfStatement") {
addBlocklessNodeIndent(node.alternate);
}
},
ImportDeclaration(node) {
if (node.specifiers.some(specifier => specifier.type === "ImportSpecifier")) {
const openingCurly = sourceCode.getFirstToken(node, astUtils.isOpeningBraceToken);
const closingCurly = sourceCode.getLastToken(node, astUtils.isClosingBraceToken);
addElementListIndent(node.specifiers.filter(specifier => specifier.type === "ImportSpecifier"), openingCurly, closingCurly, options.ImportDeclaration);
}
const fromToken = sourceCode.getLastToken(node, token => token.type === "Identifier" && token.value === "from");
if (fromToken) {
offsets.setDesiredOffsets([fromToken.range[0], node.range[1]], sourceCode.getFirstToken(node), 1);
}
},
"MemberExpression, JSXMemberExpression, MetaProperty"(node) {
const object = node.type === "MetaProperty" ? node.meta : node.object;
const firstNonObjectToken = sourceCode.getFirstTokenBetween(object, node.property, astUtils.isNotClosingParenToken);
const secondNonObjectToken = sourceCode.getTokenAfter(firstNonObjectToken);
const objectParenCount = sourceCode.getTokensBetween(object, node.property, { filter: astUtils.isClosingParenToken }).length;
const firstObjectToken = objectParenCount
? sourceCode.getTokenBefore(object, { skip: objectParenCount - 1 })
: sourceCode.getFirstToken(object);
const lastObjectToken = sourceCode.getTokenBefore(firstNonObjectToken);
const firstPropertyToken = node.computed ? firstNonObjectToken : secondNonObjectToken;
if (node.computed) {
// For computed MemberExpressions, match the closing bracket with the opening bracket.
offsets.setDesiredOffset(sourceCode.getLastToken(node), firstNonObjectToken, 0);
offsets.setDesiredOffsets(node.property.range, firstNonObjectToken, 1);
}
/*
* If the object ends on the same line that the property starts, match against the last token
* of the object, to ensure that the MemberExpression is not indented.
*
* Otherwise, match against the first token of the object, e.g.
* foo
* .bar
* .baz // <-- offset by 1 from `foo`
*/
const offsetBase = lastObjectToken.loc.end.line === firstPropertyToken.loc.start.line
? lastObjectToken
: firstObjectToken;
if (typeof options.MemberExpression === "number") {
// Match the dot (for non-computed properties) or the opening bracket (for computed properties) against the object.
offsets.setDesiredOffset(firstNonObjectToken, offsetBase, options.MemberExpression);
/*
* For computed MemberExpressions, match the first token of the property against the opening bracket.
* Otherwise, match the first token of the property against the object.
*/
offsets.setDesiredOffset(secondNonObjectToken, node.computed ? firstNonObjectToken : offsetBase, options.MemberExpression);
} else {
// If the MemberExpression option is off, ignore the dot and the first token of the property.
offsets.ignoreToken(firstNonObjectToken);
offsets.ignoreToken(secondNonObjectToken);
// To ignore the property indentation, ensure that the property tokens depend on the ignored tokens.
offsets.setDesiredOffset(firstNonObjectToken, offsetBase, 0);
offsets.setDesiredOffset(secondNonObjectToken, firstNonObjectToken, 0);
}
},
NewExpression(node) {
// Only indent the arguments if the NewExpression has parens (e.g. `new Foo(bar)` or `new Foo()`, but not `new Foo`
if (node.arguments.length > 0 ||
astUtils.isClosingParenToken(sourceCode.getLastToken(node)) &&
astUtils.isOpeningParenToken(sourceCode.getLastToken(node, 1))) {
addFunctionCallIndent(node);
}
},
Property(node) {
if (!node.shorthand && !node.method && node.kind === "init") {
const colon = sourceCode.getFirstTokenBetween(node.key, node.value, astUtils.isColonToken);
offsets.ignoreToken(sourceCode.getTokenAfter(colon));
}
},
SwitchStatement(node) {
const openingCurly = sourceCode.getTokenAfter(node.discriminant, astUtils.isOpeningBraceToken);
const closingCurly = sourceCode.getLastToken(node);
const caseKeywords = node.cases.map(switchCase => sourceCode.getFirstToken(switchCase));
offsets.setDesiredOffsets([openingCurly.range[1], closingCurly.range[0]], openingCurly, options.SwitchCase);
node.cases.forEach((switchCase, index) => {
const caseKeyword = caseKeywords[index];
if (!(switchCase.consequent.length === 1 && switchCase.consequent[0].type === "BlockStatement")) {
const tokenAfterCurrentCase = index === node.cases.length - 1 ? closingCurly : caseKeywords[index + 1];
offsets.setDesiredOffsets([caseKeyword.range[1], tokenAfterCurrentCase.range[0]], caseKeyword, 1);
}
});
if (node.cases.length) {
sourceCode.getTokensBetween(
node.cases[node.cases.length - 1],
closingCurly,
{ includeComments: true, filter: astUtils.isCommentToken }
).forEach(token => offsets.ignoreToken(token));
}
},
TemplateLiteral(node) {
node.expressions.forEach((expression, index) => {
const previousQuasi = node.quasis[index];
const nextQuasi = node.quasis[index + 1];
const tokenToAlignFrom = previousQuasi.loc.start.line === previousQuasi.loc.end.line ? sourceCode.getFirstToken(previousQuasi) : null;
offsets.setDesiredOffsets([previousQuasi.range[1], nextQuasi.range[0]], tokenToAlignFrom, 1);
offsets.setDesiredOffset(sourceCode.getFirstToken(nextQuasi), tokenToAlignFrom, 0);
});
},
VariableDeclaration(node) {
const variableIndent = options.VariableDeclarator.hasOwnProperty(node.kind) ? options.VariableDeclarator[node.kind] : DEFAULT_VARIABLE_INDENT;
if (node.declarations[node.declarations.length - 1].loc.start.line > node.loc.start.line) {
/*
* VariableDeclarator indentation is a bit different from other forms of indentation, in that the
* indentation of an opening bracket sometimes won't match that of a closing bracket. For example,
* the following indentations are correct:
*
* var foo = {
* ok: true
* };
*
* var foo = {
* ok: true,
* },
* bar = 1;
*
* Account for when exiting the AST (after indentations have already been set for the nodes in
* the declaration) by manually increasing the indentation level of the tokens in this declarator
* on the same line as the start of the declaration, provided that there are declarators that
* follow this one.
*/
const firstToken = sourceCode.getFirstToken(node);
offsets.setDesiredOffsets(node.range, firstToken, variableIndent, true);
} else {
offsets.setDesiredOffsets(node.range, sourceCode.getFirstToken(node), variableIndent);
}
const lastToken = sourceCode.getLastToken(node);
if (astUtils.isSemicolonToken(lastToken)) {
offsets.ignoreToken(lastToken);
}
},
VariableDeclarator(node) {
if (node.init) {
const equalOperator = sourceCode.getTokenBefore(node.init, astUtils.isNotOpeningParenToken);
const tokenAfterOperator = sourceCode.getTokenAfter(equalOperator);
offsets.ignoreToken(equalOperator);
offsets.ignoreToken(tokenAfterOperator);
offsets.setDesiredOffsets([tokenAfterOperator.range[0], node.range[1]], equalOperator, 1);
offsets.setDesiredOffset(equalOperator, sourceCode.getLastToken(node.id), 0);
}
},
"JSXAttribute[value]"(node) {
const equalsToken = sourceCode.getFirstTokenBetween(node.name, node.value, token => token.type === "Punctuator" && token.value === "=");
offsets.setDesiredOffsets([equalsToken.range[0], node.value.range[1]], sourceCode.getFirstToken(node.name), 1);
},
JSXElement(node) {
if (node.closingElement) {
addElementListIndent(node.children, sourceCode.getFirstToken(node.openingElement), sourceCode.getFirstToken(node.closingElement), 1);
}
},
JSXOpeningElement(node) {
const firstToken = sourceCode.getFirstToken(node);
let closingToken;
if (node.selfClosing) {
closingToken = sourceCode.getLastToken(node, { skip: 1 });
offsets.setDesiredOffset(sourceCode.getLastToken(node), closingToken, 0);
} else {
closingToken = sourceCode.getLastToken(node);
}
offsets.setDesiredOffsets(node.name.range, sourceCode.getFirstToken(node));
addElementListIndent(node.attributes, firstToken, closingToken, 1);
},
JSXClosingElement(node) {
const firstToken = sourceCode.getFirstToken(node);
offsets.setDesiredOffsets(node.name.range, firstToken, 1);
offsets.setDesiredOffset(sourceCode.getLastToken(node), firstToken, 0);
},
JSXExpressionContainer(node) {
const openingCurly = sourceCode.getFirstToken(node);
const closingCurly = sourceCode.getLastToken(node);
offsets.setDesiredOffsets(
[openingCurly.range[1], closingCurly.range[0]],
openingCurly,
1
);
offsets.setDesiredOffset(closingCurly, openingCurly, 0);
}
};
const listenerCallQueue = [];
/*
* To ignore the indentation of a node:
* 1. Don't call the node's listener when entering it (if it has a listener)
* 2. Call `ignoreNode` on the node sometime after exiting it and before validating offsets.
*/
const offsetListeners = lodash.mapValues(
baseOffsetListeners,
/*
* Offset listener calls are deferred until traversal is finished, and are called as
* part of the final `Program:exit` listener. This is necessary because a node might
* be matched by multiple selectors.
*
* Example: Suppose there is an offset listener for `Identifier`, and the user has
* specified in configuration that `MemberExpression > Identifier` should be ignored.
* Due to selector specificity rules, the `Identifier` listener will get called first. However,
* if a given Identifier node is supposed to be ignored, then the `Identifier` offset listener
* should not have been called at all. Without doing extra selector matching, we don't know
* whether the Identifier matches the `MemberExpression > Identifier` selector until the
* `MemberExpression > Identifier` listener is called.
*
* To avoid this, the `Identifier` listener isn't called until traversal finishes and all
* ignored nodes are known.
*/
listener =>
node =>
listenerCallQueue.push({ listener, node })
);
// For each ignored node selector, set up a listener to collect it into the `ignoredNodes` set.
const ignoredNodes = new Set();
const addToIgnoredNodes = ignoredNodes.add.bind(ignoredNodes);
const ignoredNodeListeners = options.ignoredNodes.reduce(
(listeners, ignoredSelector) => Object.assign(listeners, { [ignoredSelector]: addToIgnoredNodes }),
{}
);
/*
* Join the listeners, and add a listener to verify that all tokens actually have the correct indentation
* at the end.
*
* Using Object.assign will cause some offset listeners to be overwritten if the same selector also appears
* in `ignoredNodeListeners`. This isn't a problem because all of the matching nodes will be ignored,
* so those listeners wouldn't be called anyway.
*/
return Object.assign(
offsetListeners,
ignoredNodeListeners,
{
"*:exit"(node) {
// If a node's type is nonstandard, we can't tell how its children should be offset, so ignore it.
if (!KNOWN_NODES.has(node.type)) {
ignoredNodes.add(node);
}
},
"Program:exit"() {
// Invoke the queued offset listeners for the nodes that aren't ignored.
listenerCallQueue
.filter(nodeInfo => !ignoredNodes.has(nodeInfo.node))
.forEach(nodeInfo => nodeInfo.listener(nodeInfo.node));
// Update the offsets for ignored nodes to prevent their child tokens from being reported.
ignoredNodes.forEach(ignoreNode);
addParensIndent(sourceCode.ast.tokens);
/*
* Create a Map from (tokenOrComment) => (precedingToken).
* This is necessary because sourceCode.getTokenBefore does not handle a comment as an argument correctly.
*/
const precedingTokens = sourceCode.ast.comments.reduce((commentMap, comment) => {
const tokenOrCommentBefore = sourceCode.getTokenBefore(comment, { includeComments: true });
return commentMap.set(comment, commentMap.has(tokenOrCommentBefore) ? commentMap.get(tokenOrCommentBefore) : tokenOrCommentBefore);
}, new WeakMap());
sourceCode.lines.forEach((line, lineIndex) => {
const lineNumber = lineIndex + 1;
if (!tokenInfo.firstTokensByLineNumber.has(lineNumber)) {
// Don't check indentation on blank lines
return;
}
const firstTokenOfLine = tokenInfo.firstTokensByLineNumber.get(lineNumber);
if (firstTokenOfLine.loc.start.line !== lineNumber) {
// Don't check the indentation of multi-line tokens (e.g. template literals or block comments) twice.
return;
}
// If the token matches the expected expected indentation, don't report it.
if (validateTokenIndent(firstTokenOfLine, offsets.getDesiredIndent(firstTokenOfLine))) {
return;
}
if (astUtils.isCommentToken(firstTokenOfLine)) {
const tokenBefore = precedingTokens.get(firstTokenOfLine);
const tokenAfter = tokenBefore ? sourceCode.getTokenAfter(tokenBefore) : sourceCode.ast.tokens[0];
// If a comment matches the expected indentation of the token immediately before or after, don't report it.
if (
tokenBefore && validateTokenIndent(firstTokenOfLine, offsets.getDesiredIndent(tokenBefore)) ||
tokenAfter && validateTokenIndent(firstTokenOfLine, offsets.getDesiredIndent(tokenAfter))
) {
return;
}
}
// Otherwise, report the token/comment.
report(firstTokenOfLine, offsets.getDesiredIndent(firstTokenOfLine));
});
}
}
);
}
};